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A system H with a Hagedorn-like mass spectrum im-
poses the same temperature to all emitted particles which
are then in physical and chemical equilibrium withH and
with each other. The near indifference ofH to fragmenta-
tion or coalescence makes this approach relevant to heavy
ion and elementary particle collisions alike.

Hagedorn noted that the hadronic mass spectrum
(level density) has the asymptotic (m→∞) form

ρH(m) ≈ exp (m/TH) , (1)

m is the mass of the hadron and TH is the parameter
(temperature) controlling the the mass spectrum [1, 2].

The MIT bag model [3] produces the same behavior
via a constant pressure B of the containing bag [4, 5].
The bag pressure B forces a constant temperature TB

and enthalpy density ε, thus the entropy is

S = εV /TB = m/TB , (2)

V and m are the volume and mass of the bag respectively.
This leads to a bag mass spectrum identical to Eq. (1)
[4, 5]. This implies the lack of any bag surface energy.

A system H with a Hagedorn-like spectrum is a perfect
thermostat at constant temperature TH [6]. A perfect
thermostat is indifferent to the transfer of any portion of
its energy to any parcel within itself. It is at the limit
of phase stability and the internal energy density fluc-
tuations are maximal. It does not matter whether the
thermostat is one large bag or fragmented in an arbitrary
number of smaller bags or, equivalently, it is a system of
hadrons with a spectrum given by Eq. (1).

To see this consider H coupled to an ideal vapor [6]
with a free vapor particle mass m. The microcanonical
level density of the vapor with kinetic energy ε is
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V is is the volume. The full microcanonical partition is

ρtot(E, ε) = ρH(E − ε)ρvapor(ε)
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This gives the most probable kinetic energy per par-
ticle as ε/N = 3TH/2 ≡ εH and the most proba-
ble particle density of the vapor independent of V as
N/V = (mTH/2π)3/2 exp (−m/TH) ≡ nH. Using εH
and nH gives the most probable value of the system’s
level density ρ∗tot(E, ε) ≈ exp [S∗], where the entropy is
S∗ = E/TH + N . Differentiating ρ∗tot(E, ε) with respect
to m and using nH gives

∂ ln ρ∗tot(E, ε)/∂m = N [3/2m− 1/TH] . (5)

For N 6= 0 the most probable value of ρ∗tot(E, ε) is for
m = 3

2TH ≡ mH. Since all intrinsic statistical weights in
ρ∗tot(E, ε) are factored into a single H, the system breaks
into fragments with mH except for one whose mass is set
by mass/energy conservation. Substituting εH and mH
into nH gives the vapor concentration as

N/V = (3/4πe)3/2
T 3
H. (6)

The density of the vapor of nonrelativistic particles ac-
quires the form typical of the ultrarelativistic limit.

If the value of mH does not exist, then the most proba-
ble value of ρ∗tot(E, ε) corresponds to the mass m∗ nearest
to mH and nH(m∗). In terms of hadron spectroscopy the
pion mass maximizes the level density ρ∗tot(E, ε).

If we require H to completely fragment into equal mass
fragments all with translational degrees of freedom, then

ρtot(E, ε) =
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where we used εH and the Stirling formula for
(
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Equation (7) shows that all the Hagedorn factors collapse
into a single one with the m-independent argument E.
Maximization of (7) with respect to m leads to

∂ ln ρtot(E, ε)/∂m = 3N/2m = 0 , (8)

which is consistent with N = 1 and m = E, namely a
single Hagedorn particle with all the available mass.

This illustrates the indifference of H toward fragmen-
tation. Of course εH gives directly the mass distribution
of the Hagedorn fragments under the two conditions dis-
cussed above. These results justify the assumption of
the canonical formulation of the statistical hadronization
model that smaller clusters appear from a single large
cluster [7].
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